Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Eur Radiol ; 33(5): 3133-3143, 2023 May.
Article in English | MEDLINE | ID: covidwho-2286543

ABSTRACT

OBJECTIVES: We conducted a systematic and comprehensive bibliometric analysis of COVID-19-related medical imaging to determine the current status and indicate possible future directions. METHODS: This research provides an analysis of Web of Science Core Collection (WoSCC) indexed articles on COVID-19 and medical imaging published between 1 January 2020 and 30 June 2022, using the search terms "COVID-19" and medical imaging terms (such as "X-ray" or "CT"). Publications based solely on COVID-19 themes or medical image themes were excluded. CiteSpace was used to identify the predominant topics and generate a visual map of countries, institutions, authors, and keyword networks. RESULTS: The search included 4444 publications. The journal with the most publications was European Radiology, and the most co-cited journal was Radiology. China was the most frequently cited country in terms of co-authorship, with the Huazhong University of Science and Technology being the institution contributing with the highest number of relevant co-authorships. Research trends and leading topics included: assessment of initial COVID-19-related clinical imaging features, differential diagnosis using artificial intelligence (AI) technology and model interpretability, diagnosis systems construction, COVID-19 vaccination, complications, and predicting prognosis. CONCLUSIONS: This bibliometric analysis of COVID-19-related medical imaging helps clarify the current research situation and developmental trends. Subsequent trends in COVID-19 imaging are likely to shift from lung structure to function, from lung tissue to other related organs, and from COVID-19 to the impact of COVID-19 on the diagnosis and treatment of other diseases. Key Points • We conducted a systematic and comprehensive bibliometric analysis of COVID-19-related medical imaging from 1 January 2020 to 30 June 2022. • Research trends and leading topics included assessment of initial COVID-19-related clinical imaging features, differential diagnosis using AI technology and model interpretability, diagnosis systems construction, COVID-19 vaccination, complications, and predicting prognosis. • Future trends in COVID-19-related imaging are likely to involve a shift from lung structure to function, from lung tissue to other related organs, and from COVID-19 to the impact of COVID-19 on the diagnosis and treatment of other diseases.


Subject(s)
Artificial Intelligence , COVID-19 , Humans , COVID-19 Vaccines , Bibliometrics , Diagnostic Imaging
2.
Radiology of Infectious Diseases ; 8(1):1-8, 2021.
Article in English | ProQuest Central | ID: covidwho-2119120

ABSTRACT

OBJECTIVE: To set up a differential diagnosis radiomics model to identify coronavirus disease 2019 (COVID-19) and other viral pneumonias based on an artificial intelligence (AI) approach that utilizes computed tomography (CT) images. MATERIALS AND METHODS: This retrospective multi-center research involved 225 patients with COVID-19 and 265 patients with other viral pneumonias. The least absolute shrinkage and selection operator algorithm was used for the optimized features selection from 1218 radiomics features. Finally, a logistic regression (LR) classifier was applied to construct different diagnosis models. The receiver operating characteristic curve analysis was applied to evaluate the accuracy of different models. RESULTS: The patients were divided into a training set (313 of 392, 80%), an internal test set (79 of 392, 20%) and an external test set (n = 98). Thirteen features were selected to build the machine learning-based CT radiomics models. LR classifiers performed well in the training set (area under the curve [AUC] = 0.91), internal test set (AUC = 0.94), and external test set (AUC = 0.91). Delong tests suggested there was no significant difference between training and the two test sets (P > 0.05). CONCLUSION: The use of an AI-based radiomics model enables rapid discrimination of patients with COVID-19 from other viral infections, which can aid better surveillance and control during a pneumonia outbreak.

3.
Jpn J Radiol ; 39(10): 973-983, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1530376

ABSTRACT

PURPOSE: To construct an auxiliary empirical antibiotic therapy (EAT) multi-class classification model for children with bacterial pneumonia using radiomics features based on artificial intelligence and low-dose chest CT images. MATERIALS AND METHODS: Data were retrospectively collected from children with pathogen-confirmed bacterial pneumonia including Gram-positive bacterial pneumonia (122/389, 31%), Gram-negative bacterial pneumonia (159/389, 41%) and atypical bacterial pneumonia (108/389, 28%) from January 1 to June 30, 2019. Nine machine-learning models were separately evaluated based on radiomics features extracted from CT images; three optimal submodels were constructed and integrated to form a multi-class classification model. RESULTS: We selected five features to develop three radiomics submodels: a Gram-positive model, a Gram-negative model and an atypical model. The comprehensive radiomics model using support vector machine method yielded an average area under the curve (AUC) of 0.75 [95% confidence interval (CI), 0.65-0.83] and accuracy (ACC) of 0.58 [sensitivity (SEN), 0.57; specificity (SPE), 0.78] in the training set, and an average AUC of 0.73 (95% CI 0.61-0.79) and ACC of 0.54 (SEN, 0.52; SPE, 0.75) in the test set. CONCLUSION: This auxiliary EAT radiomics multi-class classification model was deserved to be researched in differential diagnosing bacterial pneumonias in children.


Subject(s)
COVID-19 , Pneumonia, Bacterial , Anti-Bacterial Agents/therapeutic use , Artificial Intelligence , Child , Humans , Pneumonia, Bacterial/diagnostic imaging , Pneumonia, Bacterial/drug therapy , Retrospective Studies , Tomography, X-Ray Computed
4.
Int J Med Inform ; 154: 104545, 2021 10.
Article in English | MEDLINE | ID: covidwho-1347660

ABSTRACT

BACKGROUND: This study utilized a comprehensive nomogram to evaluate the prognosis of patients with COVID-19 pneumonia. METHODS: COVID-19 pneumonia data was divided into training set (256 of 321, 80%), internal validation set (65 of 321, 20%) and independent external validation set (n = 188). After image processing, lesion segmentation, feature extraction and feature selection, radiomics signatures and clinical indicators were used to develop a radiomics model and a clinical model respectively. Combining radiomics signatures and clinical indicators, a radiomics nomogram was built. The performance of proposed models was evaluated by the receiver operating characteristic curve (AUC). Calibration curves and decision curve analysis were used to assess the performance of the radiomics nomogram. RESULTS: Two clinical indicators that were age and chronic lung disease or asthma and 21 radiomics features were selected to build the radiomics nomogram. The radiomics nomogram yielded an Area Under The Curve1 (AUC) of 0.88 and accuracy of 0.80 in the training set, an AUC of 0.85 and accuracy of 0.77 in internal testing validation set and an AUC of 0.84 and accuracy of 0.75 in independent external validation set. The performance of radiomics nomogram was better than clinical model (AUC = 0.77, p < 0.001) and radiomics model (AUC = 0.72, p = 0.025) in independent external validation set. CONCLUSIONS: The radiomics nomogram may be used to assess the deterioration of COVID-19 pneumonia.


Subject(s)
COVID-19 , Nomograms , Artificial Intelligence , Humans , Prognosis , Retrospective Studies , SARS-CoV-2 , Tomography, X-Ray Computed
5.
Patterns (N Y) ; 1(9): 100173, 2020 Dec 11.
Article in English | MEDLINE | ID: covidwho-1265822

ABSTRACT

[This corrects the article DOI: 10.1016/j.patter.2020.100092.].

6.
Appl Intell (Dordr) ; 51(5): 2838-2849, 2021.
Article in English | MEDLINE | ID: covidwho-935300

ABSTRACT

The novel coronavirus (COVID-19) pneumonia has become a serious health challenge in countries worldwide. Many radiological findings have shown that X-ray and CT imaging scans are an effective solution to assess disease severity during the early stage of COVID-19. Many artificial intelligence (AI)-assisted diagnosis works have rapidly been proposed to focus on solving this classification problem and determine whether a patient is infected with COVID-19. Most of these works have designed networks and applied a single CT image to perform classification; however, this approach ignores prior information such as the patient's clinical symptoms. Second, making a more specific diagnosis of clinical severity, such as slight or severe, is worthy of attention and is conducive to determining better follow-up treatments. In this paper, we propose a deep learning (DL) based dual-tasks network, named FaNet, that can perform rapid both diagnosis and severity assessments for COVID-19 based on the combination of 3D CT imaging and clinical symptoms. Generally, 3D CT image sequences provide more spatial information than do single CT images. In addition, the clinical symptoms can be considered as prior information to improve the assessment accuracy; these symptoms are typically quickly and easily accessible to radiologists. Therefore, we designed a network that considers both CT image information and existing clinical symptom information and conducted experiments on 416 patient data, including 207 normal chest CT cases and 209 COVID-19 confirmed ones. The experimental results demonstrate the effectiveness of the additional symptom prior information as well as the network architecture designing. The proposed FaNet achieved an accuracy of 98.28% on diagnosis assessment and 94.83% on severity assessment for test datasets. In the future, we will collect more covid-CT patient data and seek further improvement.

7.
Patterns (N Y) ; 1(6): 100092, 2020 Sep 11.
Article in English | MEDLINE | ID: covidwho-692873

ABSTRACT

The emergence of the novel coronavirus disease 2019 (COVID-19) is placing an increasing burden on healthcare systems. Although the majority of infected patients experience non-severe symptoms and can be managed at home, some individuals develop severe symptoms and require hospital admission. Therefore, it is critical to efficiently assess the severity of COVID-19 and identify hospitalization priority with precision. In this respect, a four-variable assessment model, including lymphocyte, lactate dehydrogenase, C-reactive protein, and neutrophil, is established and validated using the XGBoost algorithm. This model is found to be effective in identifying severe COVID-19 cases on admission, with a sensitivity of 84.6%, a specificity of 84.6%, and an accuracy of 100% to predict the disease progression toward rapid deterioration. It also suggests that a computation-derived formula of clinical measures is practically applicable for healthcare administrators to distribute hospitalization resources to the most needed in epidemics and pandemics.

SELECTION OF CITATIONS
SEARCH DETAIL